- gleichmäßig beschränkte Funktionenfolge
- равномерно ограниченная последовательность функций
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Beschränkte Menge — Die Eigenschaft der Beschränktheit wird in verschiedenen Bereichen der Mathematik einer Menge zugeordnet. Die Menge wird dann als (nach unten oder oben) beschränkte Menge bezeichnet. Damit ist zunächst gemeint, dass alle Elemente der Menge… … Deutsch Wikipedia
Gleichmäßig beschränkt — Die Eigenschaft der Beschränktheit wird in verschiedenen Bereichen der Mathematik einer Menge zugeordnet. Die Menge wird dann als (nach unten oder oben) beschränkte Menge bezeichnet. Damit ist zunächst gemeint, dass alle Elemente der Menge… … Deutsch Wikipedia
Auswahlsatz von Montel — Der Satz von Montel (nach Paul Montel) ist ein Satz aus der Funktionentheorie. Er beschäftigt sich mit der Fragestellung, wann eine Funktionenfolge holomorpher Funktionen eine kompakt konvergente Teilfolge besitzt. In diesem Sinne ist er das… … Deutsch Wikipedia
Satz von Montel — Der Satz von Montel (nach Paul Montel) ist ein Satz aus der Funktionentheorie. Er beschäftigt sich mit der Fragestellung, wann eine Funktionenfolge holomorpher Funktionen eine kompakt konvergente Teilfolge besitzt. In diesem Sinne ist er das… … Deutsch Wikipedia
Chordal gleichmäßige Konvergenz — In der Analysis beschreibt gleichmäßige Konvergenz die Eigenschaft einer Funktionenfolge fn, mit einer vom Funktionsargument unabhängigen „Geschwindigkeit“ gegen eine Grenzfunktion f zu konvergieren. Im Gegensatz zu punktweiser Konvergenz erlaubt … Deutsch Wikipedia
Gleichmässige Konvergenz — In der Analysis beschreibt gleichmäßige Konvergenz die Eigenschaft einer Funktionenfolge fn, mit einer vom Funktionsargument unabhängigen „Geschwindigkeit“ gegen eine Grenzfunktion f zu konvergieren. Im Gegensatz zu punktweiser Konvergenz erlaubt … Deutsch Wikipedia
Gleichmäßige Konvergenz — In der Analysis beschreibt gleichmäßige Konvergenz die Eigenschaft einer Funktionenfolge , mit einer vom Funktionsargument unabhängigen „Geschwindigkeit“ gegen eine Grenzfunktion f zu konvergieren. Im Gegensatz zu punktweiser Konvergenz erlaubt… … Deutsch Wikipedia
Beschränkt — Die Eigenschaft der Beschränktheit wird in verschiedenen Bereichen der Mathematik einer Menge zugeordnet. Die Menge wird dann als (nach unten oder oben) beschränkte Menge bezeichnet. Damit ist zunächst gemeint, dass alle Elemente der Menge… … Deutsch Wikipedia
Beschränktheit — Die Eigenschaft der Beschränktheit wird in verschiedenen Bereichen der Mathematik einer Menge zugeordnet. Die Menge wird dann als (nach unten oder oben) beschränkte Menge bezeichnet. Damit ist zunächst gemeint, dass alle Elemente der Menge… … Deutsch Wikipedia
Gleichmäßige Beschränktheit — Die Eigenschaft der Beschränktheit wird in verschiedenen Bereichen der Mathematik einer Menge zugeordnet. Die Menge wird dann als (nach unten oder oben) beschränkte Menge bezeichnet. Damit ist zunächst gemeint, dass alle Elemente der Menge… … Deutsch Wikipedia
Punktweise Beschränktheit — Die Eigenschaft der Beschränktheit wird in verschiedenen Bereichen der Mathematik einer Menge zugeordnet. Die Menge wird dann als (nach unten oder oben) beschränkte Menge bezeichnet. Damit ist zunächst gemeint, dass alle Elemente der Menge… … Deutsch Wikipedia